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Interactions between the hydrophobic regions of a binding site and those of a complementary
ligand are often observed to provide the driving force for binding. We present a new method
for the analysis of hydrophobic regions in the binding site of a protein that considers not only
atom type but also the nonadditive effects arising from the shape and extent of a nonpolar
region. The method has been parametrized using a purpose-built genetic algorithm to optimize
its ability to identify those regions that are more likely to form a strong interaction with a
nonpolar ligand group. We demonstrate the ability of this method to account for changes in
the shape and extent of the exposed nonpolar surface, using both artificial and protein examples.
The method is also able to rationalize differences in binding affinity for ligand-protein
complexes with largely hydrophobic binding sites.

Introduction

Hydrophobic interactions play a crucial role in ligand-
protein binding.1 Most ligand binding sites contain at
least one hydrophobic (nonpolar) region, with many
demonstrating a clear preference for nonpolar ligands,
as is the case with the nuclear hormone receptors2,3 and
fatty acid-binding proteins.4,5 In view of their impor-
tance, a comprehensive analysis of hydrophobic regions
in the binding site of a protein and an evaluation of their
relative importance are essential steps in the rational-
ization of ligand-protein interactions and in structure-
based drug design.

The hydrophobic interaction is traditionally seen as
a solvent-induced force that drives two or more pre-
dominantly nonpolar molecules or surfaces to stick to-
gether when placed in aqueous solution. This is largely
due to the entropic cost of restructuring the hydrogen-
bonding network of water.6-11 However, for a large hy-
drophobic object, it becomes impossible to maintain a
hydrogen-bonding network in its vicinity resulting in
the disruption of the structure of water and a stronger
hydrophobic interaction.12-18 The Lum-Chandler-
Weeks theory of hydrophobicity can account for the tran-
sition that occurs from the hydrophobic hydration of
small nonpolar solutes to the strong tendency for deple-
tion of water near extended nonpolar surfaces of na-
nometer-length scale such as those in proteins.19,20 Con-
sequently, the computer simulation evidence13-18 and
recent theoretical developments19,20 reveal the need to
capture the stronger hydrophobic attraction that would
arise between a ligand and a protein with a large or
concave nonpolar surface.

The strength of the hydrophobic interaction is thus
influenced not only by the polarity but also by the shape
and extent of the exposed molecular surface. Currently,

no simple theoretical model exists for calculating the
hydrophobic force arising as a result of a protein surface
beyond that afforded by empirical ligand-protein and
protein-protein scoring functions, which do not consider
the effects that arise with larger nonpolar surfaces of
arbitrary shape.1,21-26 However, a number of empirical
and quantum mechanical approaches have been devel-
oped to estimate the lipophilic properties of small
molecules.27-35

The molecular lipophilic potential (MLP)24 was the
first method designed to calculate the hydrophobic pro-
file of a molecule in three dimensions. The development
of the MLP was based on the finding that the partition
coefficient (P) of a molecule, which represents its relative
distribution over an octanol/water boundary, can be
estimated from its chemical structure.36 From the
assumption that the log P is an additive property of the
molecular fragments that make up a molecule, values
for a wide variety of atom types and groups have been
calculated.37-39 Such hydrophobic parameters are used
in the MLP, which calculates a “potential” for a point
in space by summing the surrounding distance-weighted
atom/fragment values. This concept of a MLP was later
combined with the traditional comparative molecular
field analysis (CoMFA) method40 in the program HINT.30

This modification was shown to produce a more com-
prehensive and informative description of the interac-
tion properties of a ligand through the consideration of
its hydrophobic behavior. However, while the MLP
proved to be a useful tool for calculating the effects of
substituting various chemical groups on a ligand, it is
less effective for the analysis of the binding site of a
protein. This is largely due to (1) the lack of parametri-
zation (if at all possible) of the fragment-based approach
to calculating log P for a protein surface and (2) the
increasing effects of the shape and extent of a surface
on the hydrophobicity of a protein surface region.

One possible approach to the identification of hydro-
phobic regions within the binding site of a protein is
that afforded by the GRID method of Goodford.41 In the
GRID method, a probe group is positioned at the vertices
of a grid superimposed onto the binding site of a protein.
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At each position, the interaction energy is calculated
using an empirical force field. When a nonpolar probe
such as a methyl group is used, those positions within
the cavity where hydrophobic interactions dominate can
be identified. In a parallel approach, SuperStar42,43 is a
knowledge-based method that uses data derived from
a survey of a large number of crystal structures to
calculate the likelihood of observing a particular inter-
action with a specific probe group. Likewise, when a
nonpolar probe such as a methyl group is used, positions
in the cavity where hydrophobic interactions would be
favored may be identified. However, as with the MLP,
the GRID and SuperStar methods do not explicitly take
into account the effects of variations in shape and size
of nonpolar molecular surfaces. Instead, these methods
consider atom type to be the dominant factor in deter-
mining the hydrophobicity of a molecular surface.

One way to provide a simple account of surface pro-
perties is to compute the solvent-accessible surface area
(SASA).44 This approach provides a useful tool to gain
insight into the overall extent of a hydrophobic region
on a molecule or in the binding site of a protein but lacks
any real account of the particular atom types that make
up the binding site or their positions relative to one
another. In addition, it provides no means of assessing
the shape of the binding since it only calculates the
relative accessibility of the contributing atoms.

A more comprehensive approach to calculate the hy-
drophobic properties of a molecule or the binding site
of a protein is to simulate the behavior of solvent mol-
ecules in the vicinity of the molecule or binding site us-
ing molecular dynamics (MD).11,12 Such an approach im-
plicitly accounts for both surface properties and atom
type in its calculation. However, these simulations are
computationally expensive, and there is no standard
method for defining the hydrophobicity of a molecular
surface of arbitrary shape and size on the basis of the
structural or dynamical properties of neighboring sol-
vent molecules.

In the study of protein structure and stability, hy-
drophobicity scales for amino acids have also been
derived from their relative distributions between being
at the solvent accessible surface of a protein and being
buried within its core.45,46 Many such scales have been
published describing a variety of rankings for the amino
acids.45-51 These inconsistencies generally arise as a
result of variations in the definition of the surface and
the data sets used in their parametrization. Experi-
mental scales for amino acids have also been calculated
from the free energy of transfer from water to octanol,
with octanol approximating the interior of a protein.52

Unfortunately, these scales of amino acid hydrophobicity
are more suited to the analysis of the thermodynamics
of protein folding than to the prediction of atom-specific
interactions with a ligand.

The energetic benefit of shielding a hydrophobic sur-
face from the solvent has been calculated specifically
for ligand-protein interactions.53 When the effect of
hydrophobic substitutions on the binding affinity of lig-
and for antibiotics of the vancomycin group was mea-
sured, the favorable free energy of this shielding was
calculated. The energies predicted by this approach were
significantly higher than those generated by other meth-
ods such as solvent transfer, where the free energy of

transferring a hydrophobic group from water to bulk
hydrocarbon is measured.54,55 The reason for this dis-
crepancy is believed to be nonadditivity. For example,
the burial of a hydrophobic group of a ligand in the bind-
ing site of a protein may increase the strength of neigh-
boring polar interactions such as hydrogen bonds. This
increase in strength is due to the motional restrictions
placed on the ligand by the hydrophobic interaction.
Such nonadditivity results in a greater increase in bind-
ing affinity than would be expected as a result of the
hydrophobic substitution alone. However, such methods
are designed for the prediction of protein-ligand bind-
ing affinities based on the size of hydrophobic surface
buried as opposed to the analysis of binding sites and
as such do not explicitly account for surface based
properties such as shape and extent.

To overcome the limitations of current methods for
analyzing the hydrophobicity of protein surfaces, we
have developed a new method that scores the hydro-
phobicity of solvent-accessible atoms within the binding
site of a protein based not only on atom type but also
on the size and shape of the molecular surface sur-
rounding that atom. In this paper, we also describe the
purpose-built genetic algorithm that was used in the
parametrization of the method in order to optimize its
performance. We then proceed to validate the method
and show its usefulness with a number of examples.

Methods
Representation of the Molecular Surface of the Bind-

ing Site of a Protein. The atoms comprising the binding site
of a protein are identified by their proximity to either an
existing ligand atom or a ghost atom positioned arbitrarily
within the binding site. The default cutoff for the distance
between a protein atom and any ligand atom is 5.0 Å. This
distance may be extended when a ghost atom is used. Follow-
ing the definition of the binding site, we can map a dot surface
onto the binding site atoms (Figure 1a). This dot surface
represents the path traced out by the center of a probe with a
radius of 1.4 Å as it is rolled over the van der Waals surface
of the binding site. A probe radius of 1.4 Å was chosen since
it represents the size of a water molecule, this being consistent
with calculations of the solvent-accessible surface area. The
density of dots used to create the surface is approximately 1.7
dots Å-2. All protein atoms lacking the accessibility to con-
tribute to the dot surface are removed, and each remaining
atom is assigned an initial weight based upon its classification
into one of 11 groups (Table 1). To maximize the performance
of the method, the initial weights assigned to the different
classes of protein atoms were optimized using a purpose-built
genetic algorithm (described below).

The value of the initial weight of each atom is projected onto
those dots representing its probe-extended surface. The pur-
pose of this projection is to enable the calculation of surface-
derived effects relative to a position a ligand atom can occupy
(i.e., the probe extended surface). Each dot now has an
associated value corresponding to the underlying atom type.
In the next stage of the algorithm, the value of each dot is
updated to reflect the values and relative positions of the
surrounding dots (Figure 1b-d). For each dot, the updated
score (U) is calculated as follows:

where I is equal to the initial value of the selected dot. Ij, Dj,
and Aj are equal to the initial value, distance (Å), and angle
penalty factor, respectively, of the jth member of the set of all
dots within 6.0 Å of the selected dot. The distance and angle
penalty factors are calculated relative to the dot for which the

U ) I + ∑
neighbors

Ij

Dj + 1
Aj (1)
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updated score is being calculated. The distance factor is simply
the Euclidean distance between the centers of the two atoms,
and the angle penalty factor represents the relative orientation
of the neighboring dot. The angle penalty function can take a
value between 0 and 1, with a higher value representing a
dot on a surface oriented toward the selected dot and a lower
one representing a dot on a surface oriented away from the
selected dot.

Finally, for each binding site atom, the final score is
calculated as the mean score of all dots representing its probe-
extended surface. This final score denotes the calculated
“hydrophobicity” of the atom. As the final score of an atom is
not only dependent upon its own type but also dependent on
that of neighboring atoms along with the extent and shape of
the surrounding surface, it is very sensitive to its local
environment. For example, a hydrophobic atom surrounded
by other hydrophobic atoms would score higher than the same
hydrophobic atom surrounded by polar atoms.

The resultant scoring of binding site atoms by our method
is displayed on a 3D representation of the binding site, with

all scored atoms depicted by spheres colored to represent their
final scores. This visualization tool enables the quick and easy
identification of regions of the binding site where it would be
desirable to place a hydrophobic ligand group as well as those
regions to avoid.

Optimization of Atomic Scores Using a Genetic Algo-
rithm (GA). As indicated above, the initial weights assigned
to each of the 11 atom types were optimized using a genetic
algorithm in order to maximize the performance of the method.
Genetic algorithms fall under the umbrella of evolutionary
algorithms, which use an abstract representation of Darwinian
evolution to maximize the fitness of a population. Making use
of common genetic operators such as crossover and mutation,
these methods explore the fitness landscape and “evolve”
toward an optimal solution. Extensive reviews exist for this
subject.56-58 A crucial step in the implementation of such
methods is the selection of a fitness function that accurately
reflects the performance of a given solution. Therefore, a
quantitative routine for assessing the performance of our
method was required. For this purpose, we assessed the ability
of our method to assign higher scores to those protein atoms
experimentally observed to be close to nonpolar ligand atoms
when compared to those atoms close to polar ligand atoms.
The data set used was the “clean” subset of the CCDC/Astex
data set.59 This data set represents the largest populated
structural classes of proteins, with each of the complexes
having manually assigned protonation and tautomeric states.
The clean subset comprises 220 ligand-protein complexes and
is the result of removing those structures from the complete
data set that contain either errors or inconsistencies in their
PDB files, ligands with unlikely conformations, and complexes
with severe clashes between protein and ligand atoms.59 One
of the potential pitfalls in optimizing a series of parameters
for a particular data set is that the final parameters may be
unsuitable for a different set of data. To test for this, the clean
subset of 220 complexes was split into a training set of 165
complexes on which the initial weights were optimized and a
test set of 55 complexes on which the optimal set of weights
was tested for fitness. When the final solution of a set of
complexes not involved in the optimization is tested, a measure
of the method’s generality can be gauged.

Every ligand atom within each complex of the data set was
assigned to one of two categories, nonpolar or polar. Carbon
atoms covalently bound only to carbon or hydrogen atoms were
classified as nonpolar, and all other atoms were classified as
polar. The “fitness” of our method, given a particular set of
initial weights, was calculated as follows: The final scores of
all protein atoms within a 4.0 Å radius of each nonpolar ligand
atom were calculated and their values assigned to one popula-
tion. A second population was created from the scores of all
protein atoms within a 4.0 Å radius of each polar ligand atom.
We note that due to the definitions of these two populations
there is a degree of overlap between the two with some binding
site atoms present in both populations. Following the genera-
tion of these two populations, we calculated the probability of
there being no difference between them using the nonpara-
metric Wilcoxon two-sample test. A nonparametric test was
chosen due to the non-normal distribution of the data. Finally,
the natural log of the probability was taken and the fitness of
a particular set of parameters calculated as the magnitude of
the negative of its value. The more negative the value, the
greater the statistical significance that the two populations
are different. To ensure that the nonpolar population contains,
on average, protein atoms with scores greater than those
members of the polar population, the means of the two
populations were calculated, and in cases where the mean of
the polar population was the greater, the natural log of the
probability value was multiplied by -1. Following the maxi-
mization of the difference between the two populations of
binding site atoms, the significance of this difference would
provide a primary validation of the optimized parameters,
since this difference provides a direct measure of the perfor-
mance of the method.

Figure 1. In our method, a dot surface is mapped onto the
protein cavity (a) with an initial weight assigned to each dot
based on the underlying atom type. For each dot forming the
surface (b), the contribution from neighboring dots is calculated
(c) and the final value projected back onto the underlying
protein atom (d).

Table 1. Description of the 11 Classes of Protein Atom Defined
in Our Method

atom type description

Carbons
nonpolar carbon atom bonded only to carbon and hydrogen atoms
polar‘ all carbon atoms not classified as nonpolar

Nitrogens
backbone backbone nitrogen in all residue types
amide group side chain nitrogens in glutamine and asparagine
charged side chain nitrogens in lysine and arginine
ring ring nitrogens in tryptophan and histidine

Oxygens
backbone backbone oxygen in all residues
amide group side chain oxygens in glutamine and asparagine
carboxylate side chain oxygens in aspartate and glutamate
hydroxyl side chain oxygens in tyrosine, threonine and serine

Sulfurs
sulfurs all sulfur atoms (cysteine and methionine)
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The genetic algorithm used to optimize the parameters is
detailed in Figure 2. The 11 initial parameters (weights) to
be optimized were encoded into a “pseudochromosome” of 11
genes, each representing one of the parameters. Each gene
consisted of a 5-bit binary string representing the range of
integers from -16 to 15, inclusive. The three genetic operators
used to generate new daughter chromosomes were the two-
point crossover (Figure 3a), the flip (Figure 3b), and the point
mutation (Figure 3c). Each of these operators has an associated
probability that determines their chance of being used: 0.85
for crossover, 0.70 for flip, and 0.10 for mutation. Therefore,
crossover and flip are the two main operators driving this
genetic algorithm.

An initial population of 30 randomly generated chromo-
somes is used as the starting point for the genetic algorithm.
Genetic operators act upon randomly selected chromosomes
from this population until the population size has doubled to
60. On this expanded population, elite and tournament selec-
tions are used to select individuals to go through to the next
generation. Elite selection is used to ensure the fittest chromo-
some always continues through to the next generation. In

tournament selection, two chromosomes are selected at ran-
dom and the fittest of the two goes through. This process allows
some of the less-fit chromosomes to go through to the next
generation.

In addition to the three genetic operators mentioned above,
an additional novel feature was implemented in the genetic
algorithm in order to maintain a diverse population. In test
runs, the genetic algorithm was often observed to converge to
a population of very low diversity with few unique solutions.
In situations where the number of unique solutions is less than
half the size of the population and fails to improve for five
consecutive runs, the new operator is implemented. In this
operation, a random population of 15 chromosomes is gener-
ated. This population is then “mated” through the crossover
operator with the 15 fittest chromosomes of the current
generation. As each interaction generates two daughter chro-
mosomes, the resultant 30 new chromosomes are added to the
current generation to create the complete population. Tourna-
ment and elite selections are then performed to generate the
starting population of the next generation. This operator
effectively injects fresh genetic material into a stagnant
population to increase its diversity and hopefully leads to the
creation of fitter individuals.

The genetic algorithm was run 5 times, each for 100
generations, and the overall fittest set of parameters taken.
While genetic algorithms are powerful tools for finding a
solution in the region of the global minimum, they often lack
efficiency in identifying the absolute global minimum. As such,
their combination with local search methods such as steepest
descent60 or the simplex method61 can improve their perfor-
mance. For this reason, each of the parameters from the fittest
solution generated by the GA was sequentially incremented
until the local optimal solution was found. This optimal set of
weights was then encoded into our method for evaluating the
importance of hydrophobic groups.

Results and Discussion

The first stage in the validation of our method was
to assess its ability to identify those regions in a binding
site where it would be more favorable to place nonpolar
ligand atoms and those regions that are more favorable
for polar ligand atoms. Since it was this capability that
was optimized by the GA, its performance can be taken
directly from the fitness function. With the optimal
parameter set, the significance of the difference between
the polar and nonpolar protein populations in the
training set is P ) 7.614 × 10-205. This is a highly
significant result, which validates the method’s ability
to identify hydrophobic regions in the pocket. In addi-
tion, the final set of parameters also produced a highly
significant result on the test set (P ) 1.250 × 10-76)
supporting the generality of the method.

The optimal weight values generated for the 11 atom
types defined by our method are shown in Table 2. The
more hydrophobic an atom type is, the larger the
number, with negative numbers suggesting clear hy-
drophilic properties. As expected, the highest value is
assigned to nonpolar carbons. This correlates with the
relative abundance of this atom type around nonpolar
ligand atoms when compared to polar ligand atoms. The
only atom type showing a greater preference for non-
polar ligand atoms is sulfur. However, the relatively low
frequency of sulfur atoms in the binding sites of the
training set (0.8%) may affect the accuracy of this value.
In the optimal parameter set, sulfur is given the second-
highest value. The next-highest-ranking parameter is
that of polar carbons. Polar carbons provide the major
contribution (69.0%) to the SASA surrounding the
nonpolar carbons in the binding sites studied and as

Figure 2. Flowchart describing the purpose-built genetic
algorithm (GA) used to optimize our method.

Figure 3. The three main operators used in the genetic
algorithm were the following: (a) two-point crossover, in which
two gene boundaries were selected at random on a pair of
chromosomes and the genetic material between them was
exchanged to generate two new daughter chromosomes; (b) flip
operator, in which two gene boundaries are selected at random
on a chromosome and the order of the genes between them
was reversed to generate a single daughter chromosome; (c)
mutation operator, in which a single bit is selected at random
and its value reversed (i.e., 1 becomes 0 and 0 becomes 1).
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such require a relatively high score due to the contribu-
tion that surrounding atoms make to the scoring of a
binding site atom by our method. The next-highest-
ranking parameter is that of backbone oxygens. Their
position in the overall ranking is reflected by their
unexpected preference for nonpolar ligand atoms (Table
2). Hydroxyl oxygen atom types are next in the rank-
ings, because of a slight preference of these hydroxyl
atoms for polar ligand atoms. Next in the ranking are
the nitrogen and oxygen atoms of amide side chains.
This similarity in their ranking is to be expected given
their combined presence in the side chains of glutamines
and asparagines. Carboxylate oxygen atom types are
next in the rankings. While being the lowest-ranking
class of oxygen atom, they are ranked higher than back-
bone nitrogen atoms due to the fact that they have a
weaker preference for polar ligand atoms. The reason
for this apparent discrepancy may be due to the positive
reinforcement created by having a pair of carboxylate
oxygen atoms in every acidic side chain, with the ac-
companying oxygen atom providing the major contribu-
tion (44.5%) to the surrounding SASA. On the other
hand, the major contribution to the SASA surrounding
the backbone nitrogen atoms comes from the top-
ranking nonpolar carbons (45.6%). Consequently, the
need to overcome this nonpolar influence may explain
the requirement for a lower value for backbone nitrogen
atoms compared to the carboxylate oxygen atoms.
Charged nitrogens have the same weight value as back-
bone nitrogen atoms. The ranking of these two types of
nitrogen atoms at the low end of the scale is supported
by the fact that they have the greatest preference for
polar ligand atoms when compared to nonpolar ligand
atoms (Table 2). Although charged nitrogen atoms show
the greatest preference for polar ligand atoms, ring
nitrogen atoms lie at the lowest end of the scale. While
ring nitrogen atoms show a clear preference for polar
ligand atoms, charged nitrogen atoms have, in fact, a
slightly larger preference. This apparent discrepancy
may be again explained by consideration of the atom
types contributing to the SASA surrounding the two
classes of nitrogen. For charged nitrogen atoms, the
greatest contribution comes from additional charged
nitrogen atoms (62.0%), as is the case in the side chains
of arginines; on the other hand, the dominant contribu-

tion for ring nitrogen atoms comes from nonpolar
carbons (67.0%). Therefore, ring nitrogen atoms would
be expected to require a more negative weight value to
overcome this nonpolar contribution.

One of the motivations for developing this new meth-
od was to score the hydrophobicity of atoms within the
binding site of a protein on the basis not only of their
atom type but also of their local surface properties. To
test the ability of the method to account for the shape
and extent of the surrounding surface, an artificial at-
omic surface was created comprising a range of differ-
ent surface shapes (Figure 4). Each atom forming this
model is set as a nonpolar carbon, so any differences in
the final scores can only derive from the surface proper-
ties. The atoms scored in this figure are colored to repre-
sent the full range of values for this model, with the
highest scoring (most hydrophobic) atoms colored in red
and the lowest scoring (least hydrophobic) colored in
blue.

The “V”-shaped model depicted in Figure 4 demon-
strates the effect of two surface-derived properties on
the scores assigned to a protein atom: (1) the shape or
curvature of the cavity surface in which the atom is
found and (2) a crowding effect brought about by non-
neighboring atoms coming into close proximity due to
the three-dimensional architecture of the protein. As the
coloring indicates, the most hydrophobic region is at the
base of the “V”. This is to be expected,13 given the
energetic costs of hydrating such an awkward hydro-
phobic surface: a severe enthalpic penalty arises from
the solvent water molecules having to sacrifice a number
of hydrogen bonds to fit into the narrow groove. This
energetic cost is also accompanied by an entropic
penalty due to the reduced reorientational freedom of
the water molecules. In contrast, the least hydrophobic
regions are predicted to be the ridges at the top of the
“V”. Again, this is to be expected considering that the
water molecules hydrating this region would be able to
straddle the ridge successfully thereby sacrificing mini-
mal hydrogen bonds, resulting in a smaller enthalpic
penalty (but there would still be a large entropic pen-
alty). The surface between these two regions effectively
represents a flat extended surface. Such a surface would
be expected to have a hydration penalty somewhere be-
tween that of the ridge and the groove. This is accur-
ately reflected by the scores assigned by our method.
However, the scores for the atoms in this region are not

Table 2. The 11 Atom Types Defined in Our Method and the
Optimized Weights Assigned to Them by the GAa

atom type optimized parameter % NP % Pol ∆b

Carbons
nonpolar 11 62.5 37.5 +25.0
polar 9 44.8 55.2 -10.4

Nitrogens
backbone -19 41.3 58.7 -17.3
amide group -3 40.6 59.4 -19.8
charged -19 26.5 73.5 -46.9
ring -25 29.4 70.7 -41.4

Oxygens
backbone 7 53.9 46.1 +7.8
amide group -8 45.5 57.5 -15.0
carboxylate -14 32.9 67.1 -34.1
hydroxyl 5 48.1 51.9 -3.9

Sulfurs
sulfurs 10 70.5 29.5 +40.9

a In addition, the relative occurrence of each type around
nonpolar ligand atoms (% NP) compared to polar ligand atoms (%
Pol) along with the difference between these values (∆) is shown.
b The ∆ value represents the preference of that atom type for
nonpolar ligand atoms.

Figure 4. “V”-shaped artificial surface generated to test the
ability of the method to account for different binding site
shapes. The surface was created solely from nonpolar carbons
so that any variations in score would derive from surface shape
alone. Scoring of the atoms is represented by color, with the
most hydrophobic atoms colored bright red and the least
hydrophobic colored blue.

Importance of Hydrophobic Groups in Binding Site Journal of Medicinal Chemistry, 2005, Vol. 48, No. 4 1073



all uniform, which is due to another shape effect seen
in this figure. From the base of the “V”, the atoms re-
main hydrophobic as they move up the sides, then gra-
dually become less so. This is the result of a crowding
effect, where the atoms from the facing surface are con-
tributing to the hydrophobicity due to their proximity.
This effect can be explained by the increased enthalpic
and entropic penalties associated with hydrating such
a surface; that is, a water molecule would be required
to sacrifice more hydrogen bonds and be subject to
greater reorientational restrictions due to the proximity
of the facing nonpolar surface. As the two faces of the
“V” increase their separation, the crowding effect gradu-
ally disappears, and the only remaining effect is that
of the extent of a flat surface, until the ridge is reached.

This ability of the method to account for local surface
properties (such as shape) of hydrophobic binding sites
was further tested by analyzing and comparing the lig-
and binding sites of two fatty acid-binding proteins: adi-
pocyte lipid-binding protein and a fatty acid-binding pro-
tein found in the brain (PDB62 codes 1adl and 1fdq, re-
spectively).4-5 In the first structure (1adl), the protein
is complexed with arachidonic acid, which adopts a ring-
like conformation and fits into a relatively flat region
in the binding site. Conversely, the ligand in the second
structure (1fdq), while differing only from the first lig-
and by a slightly extended aliphatic chain, adopts a coil-
ed conformation in the binding site, reflecting the more
curved nature of the binding site. Despite the difference
in shape of the two surfaces, the compositions of atom
types lining the binding sites are very similar (parts a
and b of Figure 5). In such situations, scoring functions
based on atom type alone would be unable to reveal the
difference in hydrophobicity of the two surfaces. In ad-

dition, Lee and Richard’s measure of the SASA44 of
atoms forming the two contrasting surface shapes re-
ports a greater overall surface area for the flat pocket
(1adl) when compared to the curved pocket (1fdq). The
total SASA of all atoms forming the flat surface is
151.45 Å2 with a mean SASA of 8.91 Å2‚atom-1 com-
pared to a total SASA of 139.50 Å2 and a mean SASA
of 8.21 Å2‚atom-1 for the curved surface. Taking the
nonpolar atoms alone, we calculate a total SASA for the
flat surface of 136.06 Å2 and a mean SASA of 9.07
Å2‚atom-1 compared to a total SASA of 121.91 Å2 and
a mean SASA of 8.12 Å2‚atom-1 for the curved surface.
On the basis of these data, a method for estimating the
hydrophobicity of a pocket based on the nonpolar SASA
alone would incorrectly predict the flat surface as being
more hydrophobic. However, through implicit consider-
ation of local surface properties such as shape, our meth-
od is able to correctly identify the curved binding site
as being the more hydrophobic (Figure 5c,d). As the
coloring in parts e and f of Figure 5 demonstrates, the
region around the aliphatic chain in the curved region
of the binding site of 1fdq (Figure 5d) is scored as more
hydrophobic (brighter red) than the corresponding re-
gion in the flat region of the binding site of 1adl (Figure
5c). Interestingly, the region in the curved area of the
binding site of 1fdq around the acid group of the ligand
is scored as being more polar than the corresponding
region in the flat area of the binding site of 1adl. This
suggests an increased complementarity between the
protein and ligand in 1fdq, which is in fact reflected in
the binding affinities of the two complexes. The ligand
in the first complex (1adl) has a pKi of 5.36,4 while the
ligand in the second complex (1fdq), which demonstrates
a greater complementarity, has a pKi of 7.27.5

Figure 5. The largely hydrophobic binding sites of two lipid-binding proteins (1adl and 1fdq): (a) the ligand binds in a ringlike
conformation to a flat surface in the binding site; (b) the ligand binds in a coiled conformation to a more curved surface; (c and
d) the analysis of the different shaped binding sites by our method correctly reveals a more hydrophobic surface (brighter red) for
the curved surface (d) as compared to the flatter surface (c) despite overall similarity in the atom types forming the two surfaces.
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The relationship between the complementarity of a
binding site and its ligand with the binding affinity was
investigated further. We looked for examples where a
partially hydrophobic ligand binds to the binding sites
of two different proteins with differing affinity and
assessed the ability of our method to account for the
difference (Table 3). In each of the pairs of binding sites
shown, the hydrogen-bonding interactions between the
protein and ligand were either identical or very similar.
The examples for this analysis were taken from the
recently published PDBbind.63 This database contains
800 manually inspected protein-ligand complexes, for
which both experimental crystal structures and binding
affinity data are available.

Figure 6. Analysis of four pairs of binding sites in which the same ligand binds with different affinity to the two proteins. In
each case, the complex on the left demonstrates a greater complementarity between ligand and analyzed binding site, which
correlates with a higher affinity interaction (Table 3): (a and b) factor Xa [1ezq] and trypsin [1f0u]; (c and d) HIV protease single
mutant (V82F) [1met] and HIV protease double mutant (V82F, I84V) [1meu]; (e and f) carboxypeptidase A [1cbx] and serine
carboxypeptidase II [1wht]; (g and h) carbonic anhydrase II [1if8] and carbonic anhydrase [1if7].

Table 3. The Four Pairs of Proteins Used To Demonstrate the
Relationship between Binding Affinity (pKi) and
Complementaritya

protein description PDB code pKi complementarity

factor Xa 1ezq 9.05 1858.35
trypsin 1f0u 7.16 215.86
HIV protease (V82F) 1met 9.40 1239.27
HIV protease (V82F, I84V) 1meu 6.10 -127.49
carboxypeptidase A 1cbx 6.35 398.05
serine carboxypeptidase II 1wht 3.70 200.15
carbonic anhydrase II 1if8 10.52 -188.90
carbonic anhydrase II 1if7 9.64 -438.52

a The complementarity is calculated as the sum of protein atom
scores within 4.0 Å of a nonpolar ligand atom minus the corre-
sponding value for polar ligand atoms. The greater the value is,
the greater the fit is between the ligand and analyzed pocket.
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Parts a and b of Figure 6 show the ligand binding
sites of factor Xa and trypsin, respectively, both bound
to the ligand RPR128515.64 The analysis of the binding
site of factor Xa indicates a greater complementarity
with the ligand compared to the binding site of trypsin.
For example, the protein atoms of the factor Xa binding
site surrounding the nonpolar ring groups of the ligand
are a brighter red (i.e., more hydrophobic) than the
respective atoms in trypsin. In addition, those protein
atoms of the binding site around the polar ligand groups
are a brighter blue (i.e., more hydrophilic) in factor Xa
than in trypsin. To quantify the complementarity be-
tween a ligand and an analyzed binding site, we have
calculated the sum of protein atom scores within 4 Å of
nonpolar ligand atoms and subtracted from this the
corresponding value for polar ligand atoms. The greater
the final value is, the greater the complementarity. The
complementarity values for each of the examples shown
are detailed in Table 3. The superior complementarity
between both the hydrophobic and polar groups of the
ligand and the binding site of Factor Xa is reflected by
the difference in binding affinities. Factor Xa binds the
ligand with a pKi of 9.0564 and Trypsin with a pKi of
7.16.64

In parts c and d of Figure 6, the ligand binding sites
of two mutant forms of HIV (a single mutant V82F and
a double mutant V82F I84V, respectively) are shown,
both bound to the ligand DMP323.65 The additional
mutation in the second structure results in a reduced
nonpolar surface area in that region of the site. As in
the previous example, the analysis of the binding site
of the single mutant shows a greater complementarity
with the ligand than the case of the double mutant. For
example, the atoms forming the cavity surface in the
left-hand side of the picture, which interact with two
aromatic ring groups of the ligand, are scored as more
hydrophobic in the single mutant (Figure 6c) than atoms
in the corresponding region of the double mutant
(Figure 6d). Again, this difference is reflected in the
differing affinities of the two proteins for the ligand,

with the single mutant binding the ligand with a pKi of
9.4065 and the double mutant binding the ligand with a
pKi of 6.10.65

Parts e and f of Figure 6 show the binding sites of
carboxypeptidase A and serine carboxypeptidase II,
respectively, each bound to the ligand L-benzylsucci-
nate.66,67 In carboxypeptidase A, the binding site atoms
surrounding the hydrophobic phenyl ring of the ligand
are slightly more hydrophobic than the atoms in the
corresponding region of serine carboxypeptidase II. A
greater contrast is observed between the protein atoms
surrounding the carboxylic acid groups of the ligand in
the two binding sites, with a far more polar region
predicted by our method in carboxypeptidase A. The
greater complementarity evident in carboxypeptidase A
is again reflected in the differing affinities of the two
proteins for the ligand. Carboxypeptidase A binds the
ligand with a pKi of 6.35,66 and serine carboxypeptidase
II binds the ligand with a pKi of 3.70.67

In parts g and h of Figure 6 a sulfamoyl-benzamide
ligand is shown bound in two different conformations
with carbonic anhydrase II.68 In the first conformation,
there are more high-scoring hydrophobic atoms around
the nonpolar ligand groups than in the second confor-
mation. In addition, the region of the binding site
surrounding the polar sulfamoyl group is predicted as
more polar in the first conformation. This greater
complementarity is reflected in the differing affinities
of the two proteins for the ligand. The ligand binds with
a pKi of 10.5268 in the first conformation and with a pKi
of 9.6468 in the second conformation.

Recently, a ligand-induced conformational change in
the active site of farnesyltransferase (FTase) upon
binding of the ligand farnesyl pyrophosphate (FPP) has
been investigated.69 The hydrophobicity of these binding
sites was analyzed by generating a hydrophobicity
map.70-72 The maps were generated by evaluating the
binding energy of a nonpolar probe sphere as the sum
of van der Waals interactions plus the protein electro-
static desolvation in the continuum approximation.72,73

Figure 7. The unbound (a) and bound (b) conformations of farnesyltransferase are an example of induced fit, with the farnesyl
pyrophosphate (FPP) ligand producing a rearrangement of the Arg202â. (In plate a, the ligand is superimposed onto the unbound
conformation to highlight the binding site region.) This rearrangement results in a more hydrophobic binding site enabling the
binding of the FPP substrate. The coloring of the binding site atoms represents their calculated hydrophobicity, with the more
hydrophobic atoms colored bright red and the least hydrophobic colored blue.
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The inclusion of electrostatic desolvation enabled easy
discrimination between neighboring hydrophobic and
hydrophilic surface regions. The generated map revealed
that the active site in the liganded complex74 is much
more hydrophobic than in the unliganded structure.75

This is due to the movement of the side chain of Arg202â
away from the FPP binding site, which enables the FPP
substrate to bind. The region in the binding site around
the terminal carbon of the FPP ligand was identified
as having the best free energy of binding to the nonpolar
probe, while in the unliganded FTase structure, the
probe binds similarly over a wider area.

We compared the analysis of this ligand-induced
conformational change with an analysis of the two
conformations by our method. As the respective repre-
sentations demonstrate (Figure 7), we correctly identify
the liganded conformation as being more hydrophobic
(brighter red) than the unliganded pocket. Our method
also predicts the region surrounding the terminal carbon
of the FPP ligand as being the most hydrophobic, with
a more even distribution in the unliganded binding site,
in agreement with the published results.

We can see that our method for assessing the relative
importance of hydrophobic regions in the binding site
of a protein is a simple but robust approach, superior
to other simple approaches such as the use of SASA
calculations. Our method is able to incorporate a
number of properties that are all known to be important
in defining the hydrophobicity of a nonpolar region: the
polarity of the constituting atoms and the shape and
extent of the local neighboring surface.

Conclusions

We have developed a new method to estimate the
relative importance of hydrophobic regions within the
binding site of a protein that considers both local
chemical environment and surface properties such as
extent, shape, and crowding. Following optimization
with a purpose-built genetic algorithm, our method
successfully distinguishes between those regions of the
binding site more favorable for binding of nonpolar
ligand atoms when compared to polar ligand atoms.

The method has also proved effective in predicting the
variation in the hydrophobic effect due to changes in
the shape of a surface using both artificial examples and
protein binding sites. In addition, the complementarity
between a ligand and our analysis of a binding site can
be used to predict variations in the binding affinity of
ligands to different binding sites, at least for cases
where any present hydrogen-bonding interactions are
similar. We have also shown that our method is capable
of estimating correctly the changes in the hydrophobic-
ity of a binding site as a consequence of a local
conformational change that modifies the shape and
extent of its nonpolar surface.

In summary, the method that we have developed and
validated provides a fast and accurate tool for the
estimation of the relative importance of hydrophobic
groups in the binding site of a protein. Given the
importance of hydrophobic interactions in ligand-
protein binding, this method should prove its utility in
the development of ligand design strategies in structure-
based drug design.
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